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Abstract 22 

   In this paper we describe the development and application of the GFDL decadal climate prediction 23 

system. This system consists of the GFDL CM2.1 global coupled climate model, an ensemble coupled 24 

assimilation system for producing initial conditions as well as a reanalysis, and estimates of past and 25 

future radiative forcing changes. 26 

   We assess the skill in this decadal prediction system through conducting and analyzing suites of 27 

prediction experiments initialized over the period 1961-2012. For each of the 52 years, there is a ten 28 

member ensemble of ten year experiments starting from observed initial conditions. Each of the 29 

hindcasts is also forced with time-varying estimates of radiative forcing changes. This experimental 30 

protocol is consistent with the near term prediction experiments of the Coupled Model Intercomparison 31 

Project Phase 5, and these experiments have been made available for assessment in the fifth 32 

Assessment Report of the Intergovernmental Panel for Climate Change.  33 

   The most notable predictable signal on decadal timescales is the warming trend in response to the 34 

external radiative forcing. However, a consistent predictive signal in the North Atlantic associated with 35 

Atlantic Multidecadal Variability emerges. The fact that this internal variability signal emerges over 36 

the external forcing and has predictive skill from the initialization is encouraging to the prospects of the 37 

nascent decadal prediction activity.     38 

   A decadal prediction starting in January 2012 and ending in 2021 is presented. Consistent with the 39 

uninitialized projections there is increased warming over the decade with greater warming over land. 40 

However, the initialized 2012 predictions are overall cooler than the uninitialized projections especially 41 

in the Southern Ocean.  42 

1. Introduction 43 

   An important question in the study of climate change is whether ‘near term’ or decadal predictions of 44 



 3 

future climate change could be improved if models begin their predictions from an observed based state 45 

estimation of the climate system (e.g. Meehl et al. 2009; Meehl et al. 2012). The underlying issue is the 46 

following: changes in the climate system are a combination of internal variability of the coupled 47 

system and the response of the climate system to radiative forcing changes (the forced response). 48 

Most previous climate change simulations have started from an arbitrary point in a long control 49 

simulation, and then impose changing atmospheric composition. The detailed time evolution of the 50 

model response is not expected to match the observed seasonal to decadal evolution of the climate 51 

system, since the model’s internal variability will not match that of the real climate system. This type 52 

of simulation is only meant to estimate the forced response of the climate system. Given that both the 53 

internal variability and the forced response are important sources of potential predictability in global 54 

scale projections, it is important that the ensemble of predictions sample both model and initialization 55 

uncertainties (Hawkins and Sutton, 2009). A comprehensive review of the mechanisms responsible for 56 

internal decadal climate variability and the understanding of the dynamics of interdecadal variability 57 

may be found in Liu (2012). 58 

   As part of the CMIP5 (Taylor et al 2012) and the IPCC AR5 assessment, the international community 59 

is conducting a set of coordinated experiments in which models used for the prediction of climate 60 

change are initialized with estimates of the observed state of the climate system. The key question is 61 

whether this initialization process produces model simulations and predictions that are more skillful at 62 

predicting the details of the future evolution of the climate system across time scales, from seasonal to 63 

decadal and longer, than simulations that are not initialized. These simulations are designed to compute 64 

both the forced response of the climate system and the time evolution of the internal variability of the 65 

climate system starting from an observed state. Several studies have suggested that initialization could 66 

improve skill (Smith et al. 2007, Keenlyside et al. 2008, Pohlmann et al 2009). 67 

   This near term forecast study uses the GFDL CM2.1 coupled model (Delworth et al 2006). The 68 

CM2.1 model has been the subject of previous predictability work. Zhang (2008) showed that the 69 
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Atlantic Multi-decadal Oscillation (AMO) is tied to the North Atlantic subsurface temperature in 70 

observations and also in a long control run of CM2.1. Msadek et al (2010) using perfect model 71 

experiments demonstrated that the Atlantic meridional overturning circulation (AMOC) is potentially 72 

predictable on decadal time scales. Branstator et al. (2012) quantified the initial-value predictability of 73 

six coupled models for both the North Pacific and North Atlantic oceans. The predictability for the 74 

average 300m upper ocean temperatures from a CM2.1 1000-year control integration for the North 75 

Pacific was found to be of the order 9 years and for the North Atlantic of the order 12 years. These 76 

studies indicate that the CM2.1 model has substantial potential predictability, however, to what extent 77 

the aforementioned idealized potential predictability will translate to realizable predictions is the 78 

subject of this paper. 79 

   Throughout this paper the definition of the following terms are: forecast and prediction are used 80 

inter-changeably and denote the output of simulations that are initialized with an observation based 81 

state estimation; hindcasts are retrospective forecasts that are initialized with past observations and are 82 

not using observations that would not have been available at the initial time (although the radiative 83 

forcing includes volcanoes); and projections are an estimate of future climate states based on the forced 84 

climate response of a particular emission scenario. 85 

   This paper attempts to distinguish the role of the internal variability from the forced response in the 86 

GFDL decadal prediction system and is organized as follows: 87 

In section 2, the model characteristics as well as the initialization procedure are described. In section 3, 88 

the results of the decadal predictions are assessed relative to observations before a discussion of the 89 

limitations to predictability in section 4. A prediction of global surface temperature out to 2021 is 90 

presented in section 5 and a summary and conclusions are given in section 6.    91 

 92 
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2. Initialization and Model 93 

   The feasibility of decadal predictions of internal variability largely stems from the role the ocean 94 

plays in the predictability of slowly evolving modes of variability. The challenge then is to have the 95 

capability to represent this low frequency climate variability within our climate models so that 96 

initializing them would offer the potential to predict internal variability in addition to externally forced 97 

climate change. 98 

Initialization has three main components: the observing system, the assimilation method, and the 99 

model. These three components are combined to produce initial conditions for the climate model. We 100 

examine each component and its relation to the decadal prediction problem, focusing on the role of the 101 

ocean, as that is where the memory for predictability resides.  102 

a. The Observing System 103 

   Historically, the sub-surface ocean has been very sparsely observed, and some of the data appear to 104 

be significantly biased (Domingues et al. 2008; Ishi and Kimoto, 2009; Willis et al. 2009), making the 105 

development and testing of ocean initialization schemes difficult. For instance, the non-stationary 106 

nature of the ocean observing system, particularly due to the paucity of salinity data as well as 107 

Expendable Bathythermograph temperature (XBT) data only going to 500-700 m depth, can give rise 108 

to spurious decadal variability making the assessment of forecasts difficult. 109 

   Studies of historical periods are important in order to assess the likely skill of forecasts over a range 110 

of different climate states. Recent and planned improvements to the observational network, however, 111 

offer significant potential for improvements in future forecast skill. Perhaps most important among 112 

these is the recent deployment of a global array of profiling floats by the Argo program 113 

(http://www.argo.ucsd.edu/). These provide, for the first time, contemporaneous measurements of both 114 

temperature and salinity over the upper 2 km of the global ocean (Roemmich and Gilson, 2009), 115 

potentially offering a step change in our ability to initialize ocean heat and density anomalies. These 116 
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measurements are, therefore, likely to be critical in order to make useful predictions of the Atlantic 117 

meridional overturning circulation and ocean heat transport (Dunstone and Smith, 2010, Zhang et al 118 

2010). Another important recent contribution is the altimetry data (http://www.aviso.oceanobs.com) 119 

that, in addition to its own merits, holds great promise in conjunction with Argo. 120 

  121 

b. The GFDL assimilation system 122 

   The GFDL assimilation system is based on the ensemble adjustment Kalman filter (EAKF; Anderson 123 

2001), which is a deterministic variant of the ensemble Kalman filter. The EAKF estimates the 124 

probability distribution function (PDF) of climate states by combining the prior PDF derived from 125 

model dynamics and the observational PDF. It uses a two-step data assimilation procedure (the first 126 

step computes ensemble increments at an observation location and the second step distributes the 127 

increments over the impacted grids) for an ensemble Kalman filter under a local least squares 128 

framework. The filtering process is implemented by a multivariate linear regression with consideration 129 

of covariance of both atmospheric and oceanic state variables (Anderson 2003). The data adjusted 130 

ensemble members are the realizations of the analysis PDF and serve as the initial conditions for the 131 

next ensemble integration. The analysis steps are computed daily and distributed over the model time 132 

steps to reduce analysis shocks.  133 

   The GFDL system consists of an EAKF applied to GFDL's fully coupled climate model CM2.1 134 

(Zhang et al. 2007), which is designed to produce a better-balanced initialization as opposed to each 135 

component model using its own assimilation system. The ocean component of the ensemble coupled 136 

data assimilation (ECDAv3.1) is the Modular Ocean Model version 4 (MOM4) configured with 50 137 

vertical levels and 1° horizontal resolution, telescoping to 1/3° meridional spacing near the equator. 138 

The atmospheric component has a resolution of 2.5o x 2 o with 24 vertical levels. A fully coupled model 139 

gives the first guess. The atmosphere is constrained by an existing atmospheric analysis. Ocean 140 

observations of temperature, salinity, and SST are assimilated using time-evolving covariance 141 
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structures from the coupled model. Argo observations are included as they became available in the 142 

post-2000 period.  The cross-interface covariance structures in the GFDL system allow for fully 143 

coupled assimilation. For the ocean component, subsurface temperature and salinity observed profiles 144 

(XBT, CTD, OSD, MBT, and MRB) from the World Ocean Database 2009 (Boyer et al. 2009) and 145 

SST are assimilated daily (see details in Chang et al. 2012 and http://www.gfdl.noaa.gov/ocean-data-146 

assimilation). The atmosphere is constrained by an existing atmospheric analyses [NCEP/NCAR 147 

reanalysis 1 for 1960-1978 (Kalnay et al. 1996) and NCEP/DOE reanalysis 2 for 1979-2010 148 

(Kanamitsu et al. 2002)], using temperature, winds and sea level pressure. Sea ice and soil moisture 149 

evolve without observational constraint.  150 

   All ECDAv3.1 experiments are performed with a 12-member ensemble that is used to compute state 151 

estimation, ensemble mean, and the spread of the estimate. Ten of ensemble members are also used as 152 

initial conditions. The ECDAv3.1 also uses covariance inflation that is designed to enhance the 153 

consistency of upper and deep ocean adjustments, based on climatological standard deviation being 154 

further informed by available observations (Zhang and Rosati 2010). The coupled methodology is 155 

chosen to produce an initialization that is in a better-balanced state between the state variables of the 156 

atmosphere and ocean. Ideally, the coupled assimilation would include the advantages of both the full 157 

field initialization and anomaly initialization, in the sense that the initialization shock and model drift 158 

issues are mitigated.  159 

   Chang et al. (2012) performed a comprehensive analysis of many aspects of the ECDAv3.1 160 

reanalyses and showed that it is in good agreement with observations as well as existing reanalysis for 161 

both climatology and variability.  Throughout this paper the ECDAv3.1 reanalysis is used as our 162 

verification source and will be referred to as observations. 163 

c. Experimental Design 164 

   We have used the GFDL CM2.1 climate model (Delworth et al., 2006) to conduct an extensive set of 165 

hindcasts and predictions. The model is initialized using a state of the art coupled assimilation system 166 
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ECDAv3.1 (Chang et al., 2012, Zhang et al., 2007). For each set of observed states (initial conditions) 167 

we conduct a ten member ensemble of ten year hindcasts or predictions (hindcasts when the starting 168 

date is in the past, and so its accuracy may be assessed; predictions when the starting date is close to 169 

the present, and so its accuracy is not yet known). We use observed states from January 1 of each year 170 

from 1961 to 2012, for a total of 52 hindcasts and predictions (representing 5200 model simulated 171 

years). The ensemble members differ slightly in their initial conditions as derived from the assimilation 172 

system. The simulations use estimates of observed changes in radiative forcing that include volcanoes 173 

until 2005, and estimated forcing according to the Representative Concentration Pathways (RCP4.5) 174 

scenario (Meinshausen et al. 2011) thereafter. We refer to these simulations as the initialized 175 

experiments. It should be noted that the GFDL hindcast suite exceeds the CMIP5 recommendations 176 

(minimum of three ensemble members) for both number of ensemble members and number of start 177 

dates both of which should contribute to a better signal to noise ratio than would be achieved with 178 

fewer start dates and smaller ensembles.  179 

   In addition, we have conducted a separate 10-member ensemble of simulations using the CM2.1 180 

model that are not initialized from an observed state. These start from arbitrary initial conditions in a 181 

control simulation, and cover the period 1861-2040. The simulations use the same changes in radiative 182 

forcing that the hindcasts use, and are intended to estimate the forced response of the climate system. 183 

We refer to these historical forcing simulations as the uninitialized experiments. The central question 184 

to ask is whether the initialized experiments provide better hindcasts than the uninitialized experiments. 185 

  186 

d. Bias Correction 187 

   The CM2.1 climate simulation will drift away from the observed climate to the model’s own climate 188 

as the forecast progresses beyond the initial conditions. In order to take the systematic error into 189 

account, we “bias correct” with a lead-dependent climatology. The protocol for full field initialization 190 

suggested for CMIP5 decadal forecasts (ICPO, 2011) was followed. The model drift is computed as the 191 
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difference between the ensemble of hindcasts and the observations averaged over the hindcast range, 192 

specifically annual means from 1961-2011.  The results presented here are validated to the 193 

GFDL/ECDAv3.1 reanalysis and the drift from observations is relative to the ECDAv3.1 climatology. 194 

The averages over the ensemble mean of the forecasts F and the corresponding observations O over 195 

the forecast lead are: 196 

                           Fnl =
1

nfor
Fnfnl

nf =1

nfor
!                 Onl =

1

nfor
Onfnl

nf =1

nfor
!    197 

where nf = 1, . . . nfor is the number of forecasts, nfor=52 start dates from 1961-2012 and nl = 1, . . . 198 

nleads is the number of annual mean forecast leads, where nleads =10 years. The model drift may be 199 

defined as the difference between the ensemble mean of the forecasts and the observations averaged 200 

over all start dates as: 201 

                                        dnl  = Fnl !Onl                                                                                   (1) 202 

                     
                                                              203 

and the bias corrected forecast F̂nfnl is obtained by subtracting the drift from each ensemble member 204 

as:  205 

                                  
F̂nfnl = Fnfnl ! dnl =Onl + (Fnfnl !Fnl) =Onl + "F nfnl

                            206 

the anomaly of the forecast with respect to the forecast average is: 207 

                                         !F nfnl = Fnfnl "Fnl                                                                              (3) 208 

and the observed anomaly is: 209 

                                          !O nfnl =Onfnl "Onl  210 

The “bias correction” was calculated in a cross-validated manner where each corrected forecast does 211 

not contribute to the forecast average, this is also done for the observations and unintialized projections 212 

(2) 

(4) 
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for consistency. Using start dates every year yields a bias correction that is systematic with lead and 213 

thus does not mask the predictable signal. Anomalies as defined by eqns. 3 and 4, will be used for all 214 

computations throughout this paper.   215 

   Figure 1 shows the zonal mean of the lead dependent drift (d) for: air temperature at two meters 216 

(T2m); sea surface temperature (SST); and the average ocean temperature over the top 300m (Tav300), 217 

which is subtracted from the raw forecast to produce anomalies. The most prominent features in T2m 218 

are primarily a cold bias that gets progressively colder with lead and is at a maximum and more gradual 219 

at high latitudes, along with a warm bias in the Southern Ocean, which may be traced to a low-level 220 

cloud bias. The SST drift is nearly a reflection of the air temperature; however, Tav300 appears to 221 

delay the systematic error, which may be associated with predictability, as this would be the long lead 222 

memory in the system.  223 

   e. Hindcast Spread 224 

   The use of ensemble standard deviation, as a measure of spread, is one approach to determine that the 225 

distribution of solutions of the individual ensemble member hindcasts show some reproducible 226 

behavior or whether it is chaotic. Figure 2 illustrates this for both SST and Tav300. At all time leads 227 

the SST has greater spread than the subsurface heat content, (except in the tropical West Pacific, due to 228 

winds/thermocline variations) which may be expected since SST would feel more of the effects of the 229 

internal variability of the atmosphere, whereas Tav300 would be subject to the greater thermal inertia 230 

of the ocean and thus contain the longer memory of the initialization to extend predictability. This 231 

shows that subsurface ocean, particularly in the Atlantic, is retaining some of the initial anomalies even 232 

for time leads of 5 and 10 years. This measure of irreproducibility or prediction uncertainty is not to be 233 

confused strictly with prediction error but rather potential predictability (or the model’s capability of 234 

predicting itself (Boer, 2010)). There is little understanding on the relationship between spread and 235 

skill for climate predictions. Branstator et al. (2012) investigated the degree that the initial state can 236 
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influence climate predictions and it was found that for the North Atlantic in the GFDL model the 237 

memory of the initial state of heat content tends to persist for about a decade. 238 

3. Decadal Prediction Results 239 

   The goal of this paper is to determine if, through initialization from an observed state there may be 240 

garnered additional predictability due to the representation of the internal variability over the 241 

uninitialized external radiatively forced signal. In order to discern this we have set up the best case 242 

comparison in that the coupled model and the forcing are identical in both the initialized and 243 

uninitialized experiments and the initialization and verification derives from a reanalysis that also uses 244 

the same coupled model and the same radiative forcing.    245 

   In order to assess skill, we have chosen to only show anomaly correlation coefficients (ACC) and for 246 

only three temperature variables. Although we also calculated mean squared skill score (MSSS), there 247 

did not seem to be any additional information content over the ACC.   248 

Following Goddard et al. (2012) ACC is defined as: 249 

                 ACC(nl) =
( !F nfnl " !O nfnl)

nf =1

nfor

#

!F nfnl
2 !O nfnl

2

nf =1

nfor
#nf =1

nfor
#

                                            (4) 250 

where  ACC(nl)  may be a particular lead or an average of leads.  251 

The p-value from a two-tailed Student’s t test is used for significance assessment of ACC. The p-value 252 

when taking the difference between correlation coefficients is from a two-tailed Fisher Z test for 253 

significance assessment (Goddard et al. 2012). The effective sampling size is used to reduce the 254 

degrees of freedom based on their autocorrelation (Bretherton et al. 1999). 255 
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   Figures 3,4,5 show the global ACC at various forecast leads for variables T2m, SST, Tav300. The 256 

top row is the correlation between the uninitialized hindcasts and the ECDAv3.1 reanalysis (hereafter 257 

“observations”). The middle row is the correlation between the initialized hindcasts and observations. 258 

The bottom row is the difference between the two. Only positive values are assessed for significance, 259 

since positive ACC values indicate a positive linear relationship between the hindcasts and 260 

observations. As expected, the Year 1 initialized hindcasts show considerably more positive correlation 261 

that increases going from T2m to SST to Tav300, with the ENSO pattern being a dominant feature.  262 

The average of forecast Years 2-5 and Years 6-10 show very similar ACC patterns between the 263 

uninitialized and initialized hindcasts, indicating that the trend from the external forcing is dominant  264 

and causing both sets of hindcasts to converge. The difference maps show two exceptions: 1) Tav300 265 

for Years 2-5 has more positive correlation years then T2m and SST. This indicates the more slowly 266 

evolving ocean heat content and longer predictability. 2) Every difference map shows persistent 267 

significant positive ACC in the North Atlantic region. To elucidate this feature, Figure 6 shows bias 268 

corrected hindcast SSTs where the top is the global average and the bottom is the average over the 269 

North Atlantic. For the global SST, the hindcast lead 1 is close to the observations, however, the leads 270 

5 and 10 have converged to the uninitialized case, indicating that the forced climate response 271 

overwhelms the memory of the initial conditions. The natural aerosol forcing from the volcanoes El 272 

Chichon (1982) and Pinatubo (1991) is quite evident, although the response may be overly sensitive 273 

compared to observations (Delworth et al., 2005; Stenchikov et al, 2009).   274 

   In contrast the North Atlantic SSTs at all hindcast leads converge to observations (see also Pohlmann 275 

2009) and follow the mean Atlantic multidecadal oscillation/variability (AMO/AMV) index (Yang et 276 

al, 2012) and the phase shift of the rapid warming starting in 1995. This feature is very distinct from 277 

the uninitialized ensemble-mean case where there is no rapid rise in temperature. What is particularly 278 
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interesting is that the internal variability manifested from the initial conditions clearly distinguishes 279 

itself from the uninitialized hindcasts in the North Atlantic.  280 

   In a companion paper, Yang et al. (2012) shows that the initialized GFDL decadal hindcasts may be 281 

capable of predicting SST Atlantic Multidecadal Variability up to 4 (10) year lead time at 95% (90%) 282 

significance level. Further Msadek et al. (in prep) investigates the predictability and the mechanisms of 283 

the North Atlantic warming within this GFDL decadal prediction framework. Within this paper we 284 

focus only on the question: was the 1995 North Atlantic warming predictable? To help to answer that 285 

question we show Figure 7, which depicts the North Atlantic Tav300 pentads starting in 1986 and 286 

ending in 2010. Looking at the observations (top row) the evolution of the increased heat content may 287 

be seen and the Year 1 lead (second row) shows good agreement.  The Year 5 lead does not quite 288 

capture the rapid heat content increase in 1995 but once the warm regime is established the hindcasts 289 

are able to maintain it out to 2010. The Year 10 lead remarkably shows some skill also in the last two 290 

pentads. This is in contrast to Yeager et al. (2012) whose ensemble of decadal predictions successfully 291 

predicted the rapid rise in the mid-1990s heat content as early as 1991. Robson et al. (2012) found that 292 

the mid-1990s rapid North Atlantic warming could be understood as a delayed response to the 293 

prolonged positive phase of the NAO that led to a surge in northward heat transport. Clearly the top 294 

row of Fig. 7 shows that the ECDAv3.1 captures the evolution of the observed heat content anomalies 295 

and therefore our initialization is correctly preconditioned. To what extent the initial ocean memory of 296 

the heat content as well as the associated dynamic response gives rise to predictability is beyond the 297 

scope of this paper.  Zhang et al. (2007) and Knight et al. (2005) suggest that the multidecadal 298 

variability in the Atlantic may potentially play some role in the evolution of Northern Hemisphere 299 

mean temperatures on decadal scales. Vecchi et al. (2012) shows that retrospective multi-year Atlantic 300 

hurricane predictions have high correlation in the initialized forecasts relative to the uninitialized 301 

projections. The increased skill of the initialized forecasts largely derives from the ability to persist the 302 
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initial conditions and thus represent the mid-1990’s climate shift, which corresponded to the observed 303 

upward shift in Atlantic hurricane frequency. Although, as seen in figure 7 the predictions prior to 1995 304 

did not successfully predict the shift. However, starting in 1995 and thereafter, the initialized forecasts 305 

were able to persist the climate shift and that is largely responsible for the increased skill. This is an 306 

excellent example, of the importance in considering the internal variability and the need to predict it.    307 

   Similar analyses were conducted for precipitation but the results are not shown, as there was no 308 

significant skill at any forecast lead or average of leads, except for forecast lead 1 in the tropics. 309 

4. Limitations to Predictability 310 

   Decadal prediction is a cutting edge research topic and it is not clear what will be predictable.  311 

In order to assess the skill in decadal predictions the system first needs to be verified by hindcasts over 312 

a time-series of a long period (Kumar, 2009). Decadal prediction requires a long history in order to 313 

verify the low frequency inter-decadal variability. However, since the observational record is short and 314 

as in this study there are only 51 years, sampling uncertainty for decadal variability is to be expected. If 315 

the predictability were state dependent then the small sample size would make it difficult to determine 316 

in what state the prediction would be more reliable. The sampling issue is also compounded by the 317 

inhomogeneity of the observing systems, raising the question of the quality of the initial states. For 318 

example are the hindcasts of the ‘60s, with sparse XBT data and very little salinity data to constrain 319 

density anomalies, comparable to the hindcasts of the mid 2000s with Argo fully deployed globally? 320 

Yet in our verification all predictions are weighted equally. This validation is further exacerbated by 321 

the fact that the climate itself is not stationary. Of course, if the climate observing system is sustained 322 

and even supplemented, in time these sampling difficulties will be alleviated.  323 

   The relative importance of uncertainty amongst model, scenario, and internal variability is well 324 

represented in Figure 4 of Hawkins and Sutton, (2009). It shows that on decadal time scales the 325 
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dominant sources of uncertainty are model uncertainty and internal variability. In general the internal 326 

variability increases on smaller spatial scales and hence predictability is likely to be greater for large-327 

scale ocean features and smaller for regional scale continental climate changes. Arguably both of these 328 

sources of uncertainty may be reduced as systematic errors in models are reduced and initialization is 329 

improved. Perhaps a possible rethinking of the role of scenario uncertainty on decadal time scales 330 

needs to be reconsidered given some of the recent findings on anthropogenic aerosols. As shown by 331 

Delworth and Dixon 2006, the aerosol forcing tends to cool the North Atlantic and enhance the 332 

AMOC. Many studies suggest that the observed multi-decadal variability in the North Atlantic may be 333 

linked to aerosol emissions (Rotstayn and Lohmann 2002; Even et al. 2009; Chang et al. 2012; Booth 334 

et al. 2012; Villarini and Vecchi 2012). This effect was not previously identified in IPCC/AR4 models 335 

since in most models only the direct effect of aerosols was represented; however, Booth et al. (2012) 336 

note that the inclusion of indirect aerosol effects has a large impact on North Atlantic SST. Although 337 

there is considerable uncertainty in the magnitude of aerosol forcing and its role in climate, it is likely 338 

to be an important consideration for decadal predictions. 339 

   The expectations for credible near term predictions are quite high among various stakeholders and 340 

probably too optimistic.  The uncertainty in these experimental predictions needs to be conveyed as 341 

part of their delivery.  342 

5. Temperature at 2m 2012-2021 Forecast 343 

   In the previous sections of the paper the hindcasts and their verification were the main topic. Here the 344 

decadal forecast initialized in January 2012 and using the RCP4.5 scenario as forcing projections is 345 

presented. Figure 8 shows the T2m anomalies relative to the 1971-2000 climatology.  The first panel 346 

for the 2012 forecast shows the memory of the initial conditions as the cold eastern Pacific and warm 347 

North America features are prominent. The remaining three panels show the warming response from 348 
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the external forcing as well as the impacts of the initialization. The warming is stronger over land then 349 

ocean and over the Southern Ocean there is cooling that diminishes by the 2017-2021 forecast.  350 

   To try to put this in context Figure 9 shows the difference of the forecast anomalies with the 351 

uninitalized projections for pentad time periods of the decadal forecast. Overall the forecast is cooler 352 

then the uninitialized projections, however, regions of Asia, North Pacific and North Atlantic sub-polar 353 

gyre are warmer then the uninitialized projection. Consistent with Yang et al. (2012) the forecast shows 354 

the AMO to be still in the warm phase, resulting in the bi-polar T2m pattern. At the longer forecast 355 

leads the initialized forecasts approach the uninitialized projections. 356 

6. Summary and Conclusions 357 

   Using the GFDL/CM2.1 coupled model and the ECDAv3.1 reanalysis, a series of initialized decadal 358 

hindcasts and forecasts as well as uninitialized historical runs were made to investigate decadal 359 

predictability.  This experimental protocol is consistent with the near term prediction experiments of 360 

CMIP5 and IPCC AR5. Largely the decadal predictability is realized by the climate response to 361 

changing radiative forcing, particularly at forecast leads greater then three years. The North Atlantic 362 

emerges as a region where the internal variability, as represented by the initialization, showed skill out 363 

to long forecast leads that rose above that of the uninitialized projections. This is particularly evident in 364 

the rapid warming that occurred in the North Atlantic in 1995. This climate shift was not well predicted 365 

prior to 1995, however the predictions from 1995 and on were able to show skill for the shift. 366 

   Forecasts for the five-year periods 2012-2016 and 2017-2021 show that surface temperature will be 367 

warmer relative to the 1971-2000 climatology for all land regions and ocean basins, except for the 368 

Southern Ocean where cooling is predicted. The forecasts at leads greater then four years largely 369 

converge to the uninitialized projections, with the RCP4.5 scenario.  Smith et al (2012) show the first 370 

multi-model decadal climate prediction, which includes the GFDL prediction amongst the ensemble. 371 
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This emerging effort will serve as experimental predictions that the entire climate community may be 372 

able to view and evaluate. Such an activity will enable comparisons of predictions and observations to 373 

identify model errors. This may well be the way forward toward advancing model skill.  374 

   Although formidable challenges remain, the potential utility of decadal predictions and real time 375 

attribution is enormous. While there is undoubtedly room for model improvement, we show that 376 

natural climate variability poses inherent limits to climate predictability. Thus raising expectations 377 

regarding predictability or the lack thereof should be avoided. 378 
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 548 

Figure Captions: 549 

Figure 1:  Lead dependent zonal mean of the drift climatology for 2-meter air temperature (T2m), sea 550 

surface temperature (SST), and averaged temperature over the upper 300 meters (Tav300). Contour 551 

interval is 0.2 degrees C. Lead times are given in years. 552 

 553 

Figure 2:  Ensemble Standard Deviation of SST (left) and average ocean temperature over top 300 554 

meters, Tav300 (right) from hindcasts for leads 1,5,10. Units are in degrees C. 555 

 556 

Figure 3:  T2m Anomaly Correlation Coefficient (ACC) with the GFDL reanalysis of the uninitialized 557 

forecasts (top row), initialized forecasts (middle row), and their difference (bottom row). Forecast year 558 

1 is the first column, the average of forecast years 2-5 is the second column and the average of forecast 559 

years 6-10 the third column. The yellow contour lines represent the 90% significance. 560 

 561 

Figure 4:  Same as in Fig 3 but for SST. 562 

 563 

Figure 5: Same as in Fig. 3 but for Tav300. 564 

 565 

    Figure 6: Two year running mean bias corrected average SST, black - OBS observations from 566 

ECDAv3.1, red – Uninitialized , blue solid lead 1 forecast, blue dash lead 5, blue dot lead10.  Top - 567 

Global SST, Bottom – North Atlantic SST averaged over 30N-65N, 80w-10w. Units are in degrees C. 568 

 569 

Figure 7: North Atlantic Tav300 pentads in degrees C. Top row shows observations. Subsequent rows 570 

show forecast leads 1, 5, and 10. Leads are in years. 571 
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 572 

Figure 8: T2m forecast bias corrected anomaly relative to the 1971-2000 climatology. Units are in 573 

degrees C. 574 

 575 

Figure 9: Difference of initialized forecast (start date is January 1, 2012) and unitialized projection, 576 

showing impact of initialization. Left – 2012-2016 forecast period, Right – 2016-2021 forecast period. 577 

Contour units are in degrees C. 578 
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 580 

 581 

Figure 1 – Lead dependent zonal mean of the drift climatology for 2-meter air temperature (T2m), sea 582 

surface temperature (SST), and averaged temperature over the upper 300 meters (Tav300). Contour 583 

interval is 0.2 degrees C. Lead times are given in years. 584 

 585 
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 587 
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 590 

 591 

Figure 2 – Ensemble Standard Deviation of SST (left) and average ocean temperature over top 300 592 

meters, Tav300 (right) from hindcasts for leads 1,5,10. Units are degrees C. 593 
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 602 

 603 

Figure 3 – T2m Anomaly Correlation Coefficient (ACC) with the GFDL reanalysis of the uninitialized 604 

forecasts (top row), initialized forecasts (middle row), and their difference (bottom row). Forecast year 605 

1 is the first column, the average of forecast years 2-5 is the second column and the average of forecast 606 

years 6-10 the third column. The yellow contour lines represent the 90% significance. 607 
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Figure 4 – Same as in Fig 3 but for SST. 612 
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 620 

Figure 5 – Same as in Fig. 3 but for Tav300. 621 
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 633 

 634 

Figure 6 – Two year running mean bias corrected average SST, black - OBS observations from 635 



 33 

ECDAv3.1, red – Uninitialized , blue solid lead 1 forecast, blue dash lead 5, blue dot lead10.  636 

    Top - Global SST, Bottom – North Atlantic SST averaged over 30N-65N, 80w-10w. Units are 637 

degrees C. 638 
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 644 

Figure 7 – North Atlantic Tav300 pentads in degrees C. Top row shows observations. Subsequent rows 645 

show forecast leads 1, 5, and 10. Leads are in years. 646 
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 648 

Figure 8 – T2m forecast bias corrected anomaly relative the to 1971-2000 climatology. Units are in 649 

degrees C. 650 

 651 
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 655 

 656 

Figure 9 – Difference of initialized forecast (start date is January 1, 2012) and unitialized projection, 657 

showing impact of initialization. Left – 2012-2016 forecast period, Right – 2016-2021 forecast period. 658 

Contour units are in degrees C. 659 
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